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The problem of the detection, formation, and propagation of a fast moving shock in a 
wholly subsonic environment inside a closed-end tube is solved by a finite-difference integra- 
tion method belonging to the family of shock-fitting techniques. The shock is fitted by locally 
combining the method of characteristics with the Rankine-Hugoniot relations, while the 
regions of smooth flow are solved via a i scheme. A special attention is devoted to the 
problems related to shock detection and formation and to the treatment of the reflection of 
the shock at the boundaries. The pressure oscillation data demonstrate that the shock transi- 
tion remains sharp and oscillation-free even after many wave cycles. The spectral analysis per- 
formed on these data shows that the energy distribution among modes is in good agreement 
with the analytical solution. These results point out the characteristics of low dissipation and 
dispersion of the method. For these reasons, the proposed integration technique is particularly 
well suited for the study of nonlinear axial mode instabilities (usually referred to as “triggered 
instabilities”) in combustion chambers, ((” 1990 Acddemc Press. Inc. 

1. INTRODUCTION 

In a large number of classical problems, a steady or slow-moving shock separates 
a region of supersonic flow from a region of subsonic flow. Conversely, if an initial 
pressure perturbation is prescribed within a tube, closed at both ends, a shock wave 
may appear, which moves rapidly within a wholly subsonic environment. The 
numerical analysis of the formation of a shock and of its subsequent evolution and 
multiple reflections at the end-walls of the tube is a challenging task, from which 
a better understanding of basic relations between physics and numerics can be 
gained. 

Baum and Levine [l] provided an excellent numerical description of the 
problem after conducting an exhaustive comparative study of several shock-captur- 
ing techniques. Their final goal was the definition of a technique suited for the 
analysis of nonlinear axial mode instabilities in combustion chambers [2, 31, for 
which the occurrence of numerically induced pre- and post-shock oscillations “does 
not just impair the accuracy of the solution, but it can lead to non-physical solu- 
tions by erroneously ‘triggering’ nonlinear combustion instabilities” [ 11. Here, we 
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intend to supplement their review by the application of a shock-fitting technique to 
this problem. 

A suitable integration method to be coupled with shock-fitting is the 2 scheme 
[4, 51. Since all schemes analyzed in [l] discretize the equations of motion in 
divergence form, whereas the proposed technique is a finite-difference interpretation 
of the method of characteristics, we have to prove that results obtained by the present 
method are at least as good as the best results of [ 11. 

For a wholly subsonic environment, indeed, the marriage of the ,? scheme with 
shock-fitting is not as straightforward as it may appear in [S], where transonic or 
wholly supersonic environments are analyzed. The general description of the techni- 
que is given in Sections 4-8. 

Special points of interest of the technique are (i) the numerical handling of the 
shock detection (Section lo), (ii) the updating of points neighboring the shock 
(Section 9), and (iii) the treatment of the reflection of the shock at the end-walls 
of the tube (Section 11). 

In the discussion of the results (Section 12) particular attention has been given to 
the problems associated with shock detection (12.2), shock formation (12.3) and 
reflection (12.4). We conclude our study with a spectral analysis of the pressure 
oscillations at a fixed location (Section 12.5). Comparison of our power spectral 
densities with the results of [ 1 ] shows excellent agreement. 

2. GENERALITIES OF THE METHOD 

Richtmyer and Morton [6] discussed a theoretical formulation for fitting an 
embedded shock, but they did not made any computation based on that theory. 
The first computations have been made by Moretti and Abbett [7] for blunt body 
flows. There, the shock was thought of as a boundary of the flowlield. From this 
first application to the latest ones dealing with two-dimensional unsteady flows with 
multiple embedded shock waves (Moretti [S]), a large amount of knowledge has 
been acquired in order to deal with both numerical and topological problems 
concerning shock wave propagation. 

To solve this category of problems Salas [8] was the first to use a computational 
point free to float over a fixed grid (“floating shock point”). Later, Moretti and 
Di Piano [9] devised an unsteady one-dimensional computational technique to 
deal with many kinds of mutually interacting discontinuities. 

Chern et al. [lo], following a similar line of thought, tracked several kinds of 
singular surfaces (such as shock waves, contact discontinuities, slip lines, phase 
boundaries, chemical reaction fronts) by superposing on a fixed grid a lower dimen- 
sional adaptive grid associated with the evolving discontinuities. 

The two approaches share the same basic philosophy, while they differ in the 
handling of the discontinuity evolution and in the range of applicability. 

In our work, the “floating shock point” is a double-valued point representing the 
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states astride the shock discontinuity. This “shock point” can freely float on a fixed 
grid. The propagation of the “shock point” is described by coupling the method of 
characteristics with the RankineeHugoniot relations. The integration via charac- 
teristics is also applied for updating the “grid points” affected by the presence of the 
shock. The integration of the remaining “grid points” is performed by a finite 
difference scheme following the jti formulation. 

The analogies between the present work and those mentioned above lie in the 
treatment of the smooth flow regions and in the updating of the position of the 
shock. This is carried out as in [9], while the computation across the discontinuity 
follows a procedure similar to that adopted by Chern et al. It must be noted that, 
unlike Moretti’s or Chern’s approaches, the value of the solution at “grid points” 
close to the shock is obtained by direct integration along characteristics as opposed, 
for example, to what is done in Chern’s flux balances over the irregular cells close 
to the front. 

Something which is apparently still missing in the “front tracking method” [lo] 
is the ability to detect the onset of embedded discontinuities. Here, we propose a 
shock detection procedure that recalls, to some extent, the approach followed by 
Salas [S]. 

The search for a possible shock onset is confined at the grid cells where the 
characteristic slope decreases moving from one point to the next (compression 
regions). At the cell where the compression gradient is maximum, the presence of 
a shock is suspected, and the shock Mach number is approximated on the basis of 
the flow variable trends at the sides of this cell. Depending on the value of the 
Mach number obtained in this way, the actual presence of the shock in the cell is 
assumed or not. A low value of the minimum shock Mach number permits the 
shock detection at a very early stage of the shock development. This criterium is 
easy to implement, numerically inexpensive, and it allows the detection of any kind 
of unsteady shock (super-sub, super-super, and sub-sub). 

Procedures similar to that exposed above have also been applied by the authors 
in quasi-one-dimensional problems with multiple discontinuity interactions [ 111 
and in two-dimensional unsteady problems [ 121. 

3. THE PROBLEM 

A closed-end tube is filled with a gas at rest. The gas is assumed ideal, inviscid, 
and non-conducting. When an initial pressure perturbation is applied, the gas is set 
into motion. The propagation of pressure waves has a strong nonlinear character 
that leads to the steepening of pressure gradients. Eventually, the isotropic solution 
will develop a multi-valued region in the (x, t) plane. The flow at this point cannot 
remain isentropic anymore and a shock discontinuity develops. The problem of 
finite amplitude sound wave propagation in an unbounded medium is described in 
[13]. There, it is shown that the flow eventually reaches a stable sawtooth-like 
shape. Inside the tube the shock travels back and forth reflecting at the ends. There 
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is a conversion of energy into heat any time a fluid particle passes through a shock 
and at any reflection. This makes the amplitude of the pressure perturbations decay, 
following an exponential law. 

In a real gas viscous and heat diffusion prevail over convection when the 
displacements of the fluid become smaller and smaller because of the loss of energy. 
When this occurs the shock wave decays into an ordinary wave. 

4. NON-DIMENSIONALIZATION OF FLOW VARIABLES 

All quantities involved in the equations of motion are made dimensionless 
assuming the following values as reference, 

pr= 101325 $, x,= lm, p,= 1.22 $, J 
R, = 201.05 - 

KgK ’ 

where p is pressure, x is the spatial abscissa, p is density, R is the gas constant. The 
non-dimensional value of all remaining quantities can be obtained by dividing them 
by the values, 

0 

w 
u,=h ) 

P, 
a, = u, , &A, T, = .-!% 

ur ~3, ’ 

where u is flow velocity in the x-direction, a is speed of sound, t is time, T is 
absolute temperature. 

In order to simplify the form of the equations of motion, the non-dimensionalizing 
value of the entropy S is assumed equal to yR,. The entropy is set equal to zero 
at (T,, p,). Note also that the non-dimensional time in our results differs from that 
in [ 11, since we used as reference velocity u = (~~/p~)“~, instead of a = (y~~/p~)“~. 
Hence, the two non-dimensional time are related as follows: 

l/2 
[[I] = t,..y 

5. ONE-DIMENSIONAL EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

The equations of a one-dimensional unsteady inviscid flow, for a perfect gas, can 
be written in quasi-linear form as 

w,+Jw,=O 

with 
(1) 

(2) 
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The matrix J can be diagonalized as J= Lp ‘AL, with 

> A= 

Hence (1) become 

u+a 0 0 

0 u-u 0 

0 ou 
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(3) 

(4) 

obtained by left-multiplying (1) by L. The diagonal terms of A are the eigenvalues 
of J, while L is the matrix of the left-eigenvectors of J. 

Introducing the notations 

R, =;+u, R,=;-u, i,=u+a, I., = u-u, &3 = 4 (5) 

we can write (4) in the form used for the integration at the “grid points” via 3, 
scheme, 

s,+j”,s,=o 

R,,+i,(R,,-aS.,)-aS,=O (6) 

R,, + A,( R,, - US.,) - US, = 0, 

and, for the shock fitting device, these equations can be rewritten as 

DS -z.z 0 
Dt 

along A3 

DR, DS 
Dt 

unl=o along A, 

DR, DS -- 
Dt 

Unt’O along 1,. 

(7) 

The tube has closed ends. The fluid velocity at the boundaries is zero. Therefore 
the entropy, which is convected along pathlines, can be varied at the boundaries 
only by the reflection of the shock. Signals travelling along the characteristics 1, or 
%* are simply reflected at the boundaries. 

6. INTEGRATION OF EQUATIONS OF MOTIONS AT GRID POINTS 

“Grid points” are updated in time by applying the version of the 1. scheme 
presented in [9]. The scheme follows a predictor-corrector procedure. It is second- 

581188.2-I I 
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order accurate in space and in time even for non-linear problems [ 141. When the 
Courant number is set equal to 1 or 2, the scheme is essentially non-dissipative and 
non-dispersive. The CFL condition is applied by taking into account not only the 
wave propagation speeds at “grid points”, but also those at the “shock points”. 

The one-dimensional, two-level scheme can be written as follows: 

Predictor step. Let x = n Ax, t = k At, and 

(8) 

.fL = -A (u; + u;!)(s;* - SF). 

The index j in the i-th equation of the set (8) equals n - 1 when the corresponding 
Ai,, is positive, otherwise j is set equal to n. The index j’ is always defined as 
j’=j+ 1. 

Corrector step. Let also 

Fkf1/2=2f;,+,1!2-fl;,i 
I, ” 

F k t 112 _ 2 k + II2 
2. n - f2,” -fl,, 

f-k+ 112 =2f;,+,“2 - f;,,, 
3. n 

(9) 

where j equals n - 1 when the corresponding ,Ii,n is positive, otherwise j is set equal 
to n+ 1. 

Knowing all the values at level k, the values at level (k + i) are obtained as 
follows : 

S,=f$,., n Sk+1’2=S;+SIAt 

~;+“~=a;+ daS,+;(ff,,,+f;,,, 
[ I 

At (10) 

u;+ “2 = uf: + ;(f’;,,, -f;,,,) At. 

At the second level similar equation are used, with F instead of .f and (k + 4) 
instead of k. 

Since the scheme discretizes equations written in quasi-linear form, it is not able 
to provide a built-in mechanism for the evaluation of shocks. Any “physical” shock 
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is turned by the scheme into an isentropic jump, moving at an incorrect speed, 
across which the Rankine-Hugoniot relations are not satisfied. This scheme does 
not preserve the monotonicity of the solution; therefore, oscillations may appear in 
regions of strong gradients. 

7. INTEGRATION OF COMPATIBILITY EQUATIONS ALONG CHARACTERISTICS 

The shock-fitting device consists of solving the double-valued “shock point” and 
the “grid points” affected by the closeness of the shock, by applying a numerical 
scheme of integration based on (7). 

The compatibility equations (7) are discretized as follows. Let xP be the abscissa 
of a point at the time level tk + ‘, to be updated by applying (7). Let C1, C,, C, be 
the points of intersection of the characteristics passing through P with any time-like 
arc QR in the (x, t) plane (Fig. 1). 

We will assume the characteristics to be straight lines within a time interval. A 
first-order discretization of (7) can be written as 

s~ysc,=o (114 
Rk+l-R 1, xp 1, Cl =~c,(S~y%-,) (lib) 

The new values of a and u at P are algebraically related to R, and R, through 
the relations (5). 

Any point of intersection Ci of the arc QR with the characteristics ii passing 
through P can be determined by solving the system 

3,(x, t)=(xp-x))l(tk+‘-t) 

F(x, t) = 0, (12) 

where F defines the arc QR. The evaluation of any other function @ along the arc 

P 

R 

FIG. 1. Integration along characteristics. 
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QR is performed by assuming for Cp the same law of variation which have been used 
for 3LJ.x) t). The interpolating functions for ij will be defined in Sections 8 and 9. 

The integration time step along characteristics at the “shock points” is defined as 
half the time step used for the integration at the “grid points”. 

8. TREATMENT OF SHOCKS 

The path of a discontinuity describes a straight line OP in the (x, t) plane 
(Fig. 2). The portions of the x-axis at the time level tk, QO and OR, constitute two 
intersecting time-like arcs along which all variables are known. Equations (7) are 
integrated along characteristics coming from suitable points on QO and OR to 
update the states at points A and B. 

Along arcs QO and OR a linear variation for i,(x, tk) is obtained by a least 
square fitting of the values of Ai at three consecutive computational points (either 
“grid” or “shock points”) belonging to QO (OR). 

Let the low pressure side of the double-valued “shock point” be designated with 
A and the high pressure side with B. With respect to a frame of reference moving 
with the shock, the relative flow at A is always supersonic and at B is always sub- 
sonic. Hence three pieces of information are convected to A along characteristics 
coming from OR and only one arrives in B starting from QO. The Rankine- 
Hugoniot relations applied between A and B, provide the three extra relations 
necessary for calculating the states astride the shock and its velocity. 

The updating of the shock Mach number M, = (uA - ~‘)/a,, where UJ is the shock 
speed, is performed by using a linearized procedure. 

Let Z be defined as a function of the shock Mach number [S, 151, 

c*-1 
=- 

6 ’ 

(13) 

FIG. 2. Treatment of shock. 
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where j is set to 1 or 2 accordingly with the family of the shock and with 

= [W-q-Ml +6fq)11’2+6(1 -MS) 
(1 + 6) IM,I - (1+6)M,’ 

where the plus sign has to be taken for j = 1 and the minus sign for j = 2. 
The time derivative of C*, is obtained using the chain rule, 

Hence, 

with 

and 
6 

i 

A4 M,4+1 
=*,:=(1+6)Mf IM,I [(M+J)(l +SMj),‘:2f(1+M~) 1 

with the minus sign for j= 1 and the plus sign for j= 2. 
Finally, 

M;+‘=M;+M:,At. (14) 

The values RjA, ,, aA,, can be accurately computed from the integration of (11) 
at the low pressure side. A small error is introduced in R,B, ,, where the entropy is 
assumed constant along >UjB. A more accurate iterative procedure, taking into 
account even the small contribution of the entropy, is presented in [ll]. 

The propagation speed of the shock needed to update the shock location is 
computed as 

wk+l=Uk+l~ak+I 
A4/:+1. (15) 

9. UPDATING OF GRID POINTS AROUND THE SHOCKS 

A further remark concerns the integration of the “grid points” neighbouring a 
discontinuity. The integration via 1, scheme may be erroneously carried out when 
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the domain of dependence forces some x-derivatives to be computed across 
the discontinuity. This situation may occur for those “grid points” just swept 
by the moving shock. When this happens, the integration at those single points is 
performed by using the compatibility equations (7). 

Because of the proximity of the shock, it is very likely that some backward 
characteristics stemming from X intersect the shock at time levels successive to tk 
(Fig. 3). 

When this happens, a linear variation of 2, (and of all other functions) along the 
time-like arc PO is assumed. The flow variables in P are known since the shock is 
solved as a first step of the integration procedure. 

It should be pointed out that the integration of X-type points performed accord- 
ingly to the procedure described above greatly enhances the precision and the 
robustness of the calculation, becoming in this way one of the most significant 
features of the method. Any kind of interpolation or, even worse, extrapolation 
used for the computation of points such as X makes the code less accurate and 
more dissipative; sometimes it may lead to catastrophic instabilities. 

10. SHOCK DETECTION 

Any shock-fitting device needs some criteria for determining when and where it 
is no longer possible to treat a compression wave as an isentropic process. Analyti- 
cally, a shock wave appears when characteristics of the same family overlap. This 
occurrence is interpreted in the discretized model by pinpointing a cell in the (x, t) 
plane where a shock is likely to form. We use a cascade of tests for this purpose: 

(a) A shock can occur only in compression waves, i.e. regions where 
characteristics of the same family converge. This happens to be the case when 

di, 
co 

if *CO 
dx 

or when 

FIG. 3. Updating of X-type points next to the shock. 
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(b) Inside the compression region, we locate the possible shock where the 
compression gradient is the steepest, i.e., where 

d21, 
-=0 if 4 
dx2 Txco 

or, where 

d2& 
--0 
dx* 

if *>O 
dx ’ 

(c) An estimate of the strength of the candidate shock is needed. A measure 
of strength is the shock Mach number M, = (u, - ~)/a,, where the shock speed w 
is estimated as the mean value of the characteristics at the two nodes bracketing 
those cells that have been passed tests (a) and (b), 

W=(Aj,n+~~j,n+I)/2, (16) 

where j is chosen accordingly with the family of the onsetting shock. The values of 
u,,, and uA are evaluated as follows: when a “shock point” is created, a small jump, 
of rather arbitrary size, is superposed on the solution, consistent with a new 
discretized description of the solution. In order to reduce as much as possible the 
arbitrariness of the jump estimate, the initial values in front of the shock are defined 
as a fraction of the whole jump between the two nodes of the cell: 

QA = a,, + 4% + I - a,,) 
u/4 = u,, + 4% + I - u,,), 

(17) 

where c( is less than 4 (typically c1= 0.45). At this point an approximate value of M, 
can be computed and when this value exceeds a given threshold, say M,i”, we 
decide that a shock is born at the middle of that cell. 

The crucial steps for a correct shock formation are an early detection and a 
proper placement of the shock. The failure of the first requirement is responsible for 
the development of strong wiggles, whose effects cannot be eliminated anymore. An 
incorrect placement leads to the tracking of a simple compression wave instead of 
a true shock. 

FIG. 4. Reduction of time step when shock approaches the boundary. 
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11. SHOCK REFLECTION 

So far, we have described the treatment of a shock when it has no interaction 
with the boundaries. We have seen that the solution of (7) requires the existence of 
time-like arcs along which an initial solution of (7) is known. Hence, the updating 
of a “shock point” P, from the time level tk to t”+ ‘, is possible only when no point 
of intersection C, falls outside the boundaries. In Fig. 4, a left-running shock is 
approaching the left end of the tube. 

The maximum allowable time step can then be defined by the intersection, in the 
(x, t) plane, of the least steep characteristics coming from the boundary with the 
shock path. When the shock approaches the boundary, the time step progressively 
decreases and when the distance from the boundary drops below a certain “small” 
value, say 8, we will proceed to compute the reflection of the shock analytically 
(many classic text books [16, 171, report all pertinent details). 

12. DISCUSSION OF RESULTS 

The evolution of a pressure perturbation in a closed-end tube provides an 
excellent test case for analyzing the efficiency of the proposed numerical methods in 
the description of shocks moving in wholly subsonic flowlields. In the following sec- 
tions the initial conditions for the test case will be specified and then the behaviour 
of the numerical simulation with respect to the shock detection, formation, and 
reflection will be discussed in depth. Finally, the evolution of the pressure oscilla- 
tion will be analyzed both in the time and frequency domain. 

12.1 Initial Conditions 

The pressure of the gas in the tube is initially set equal to p,, = 1. The entropy is 
zero throughout the whole flow field. Then, a pressure perturbation p”(x)= dp 
cos(rcx), is applied to the gas at rest. Tests are presented for values of dp = 0.2 and 
0.6. The ratio of specific heats is set equal to 1.22 in order to agree with the value 
used by Baum and Levine [ 11. The Courant number is always set equal to 0.9. 
Results are presented for meshes having 64 and 128 intervals, respectively. 

12.2. Shock Detection 

The effects of a delayed shock detection are evidenced in Fig. 5e, where 
A4 mln = 1.044 and dp = 0.6. The ;1 scheme treats the strong gradients, associated 
with the development of a discontinuity in the solution, as an “isentropic shock”. 

FIG. 5. (a)-(d) Isomach lines in the (x, 0 plane; squares trace the shock path. (e)(h) Velocity 
profile time evolution; solid lines bracket the velocity jump across the moving shock, arrows show the 
versus of increasing time. (a), (e) No tracking: development of an “isentropic jump,” (b), (f) Early shock 
detection, M,,, = 1.0015. (c), (g) Delayed shock detection, M,,, = 1.008, (d), (h) Mesh dependence of 
the pre-shock wiggle. 
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It is clear from Fig. 5e, that the scheme does not preserve the monotonicity at the 
jump and that the “isentropic shock” moves with an incorrect speed (Fig. 5a). 

Two solutions are presented where smaller M,,, are adopted (Figs. 5b, f, and 
5c, g). The trace of the shock is marked with squares in the (x, t) plots of 
Figs. 5a-d. Solid lines in plots of u vs x at successive instants (Figs. 5f-h) bracket 
the shock growth. 

It is evident that a smaller M,,, allows an earlier detection of the shock (com- 
pare Figs. 5b and c). The figures show that solutions obtained with different IV,,,, 
providing that Mmin is small enough, do not substantially differ. 

It can also be observed that the shock evolution immediately after detection 
behaves rather smoothly no matter the M,,, chosen. 

12.3. Shock Formation 

Problems, under the form of a pre-shock oscillation, arise prior to shock 
appearance and formation. By a comparison of Figs 5b, f (obtained with 64 inter- 
vals) with Figs. 5d, h (obtained with 128 intervals) it seems that the magnitude of 
this wiggle decreases with finer meshes; it seems also independent from the value 
chosen for Mmin (see Figs. 5b, c). 

The development of this oscillation is the result of a loss in accuracy that the on- 
setting shock induces in the solution. The accuracy of a discretized scheme is strictly 
related to the existence of a uniformly convergent Taylor expansion of the solution 
and, consequently, to the location of singularities of such solution, considered as a 
function of a complex variable. 

If a singular point of the solution moves towards the real axis, a local lack of 
convergence may occur. Near the edge of the domain of convergence the leading 
terms of the Taylor series appear to form a divergent sequence, The discretized 
scheme, built by neglecting the higher order terms of the Taylor series, introduces 
a local error that grows as the singular point gets closer to the real axis (i.e., when 
a shock jump is about to appear in the solution). The discretized solution can 
converge only in the mean, not uniformly (see other details in [19]). 

Once a shock is fitted, the computational domain is actually split in two parts. 
The shock becomes merely the boundary across two regions, whose correspondent 
singular point tend to move away from the real axis as the shock, by increasing its 
strength, absorbes the region of steep gradients characterizing the compression 
wave around the shock. 

A Fourier expansion of the solution when the shock is about to form, or just 
fitted, displays a progressively increasing energy content at the higher modes. Now, 
a second-order upwind scheme introduces a phase shift error that is a function of 
the wave number. This fact can also be observed by analyzing the propagation of 
a truncated sine wave. In this case the presence of many harmonics in the solution 
is introduced by replacing the original wave with the sum of a finite number of har- 
monic components (and this is always the case when a discretized representation of 
the function is adopted). A second-order upwind scheme under these conditions 
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FIG. 6. Fully-developed rightward moving shock. 

develops a precursor that looks quite similar to that exhibited by our present 
results [20]. 

In fact, perhaps the most appealing feature of a shock fitting approach lies 
specifically here: after the fitting, the flowfield at both side of the shock can become 
smooth again, recovering uniform convergence with a low energy content at the 
higher harmonic components. At this point the discretized scheme does not pose 
problems any longer in properly describing the evolution of the solution. 

In any case, it must be noted that the pre-shock wiggle disappears when the 
shock becomes fully developed, having affected the calculation only momentarily, 
as it is demonstrated by Fig. 6 where the shock propagates with little dissipation 
and dispersion (in Fig. 6 the jump on the speed of sound moves rightward). 
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FIG. 7. Reflections of a partially shocked compression wave. 



424 VALORANI AND DI GIACINTO 

12.4. Shock Reflection 

When the amplitude of the initial pressure perturbation drops below 0.2, the 
shock needs a longer time to reach its fully-developed state shown in Fig. 6. The 
compression wave reflects two times (Fig. 7) and only the third time it is partially 
shocked (Figs. 8a, b). Solid lines bracket the velocity jump approaching (Fig. 8a) 
and leaving (Fig. 8b) the left end of the tube. In Fig. 8c, d, lines of constant Mach 
number are plotted on an enlarged (x, t) scale in the vicinity of the shock reflection. 
The flowlield in front of the shock, zone (2), is far from being uniform. Therefore, 
an error is introduced if the shock is still far from the boundary (Fig. 8c), since the 
shock reflection is computed on the basis of the values at the low pressure side 
(Section 8). This error can be gauged by the relative increase of the shock Mach 
number from A to B, which is 1.52 % in Fig. 8c and 0.19 % in Fig. 8d. The long 
term effect of such inaccuracies are illustrated in Figs. 8e, f, where the overall mass 
loss of the system due to numerical errors is shown. The two results refer respec- 
tively to a limiting value of AX/E = 4 (Fig. 8e) and AX/E = 256 (Fig. 8f). During the 
initial stage of the transient (AB, Fig. 8e) it is the basic jV scheme that dissipates. 
The losses increase slightly right after the reflection of the compression wave 
(A,, AZ). The fitting of the shock occurs around point B. The shock formation 
phase falls between B and C and in C the first shock reflection occurs. An inac- 
curate shock reflection is not conservative, as measured by the sharp jump CD in 
Fig. 8e. In Fig. 8f the size of the jump CD has almost vanished. Comparing the two 
results shows how much the accuracy of the computation is affected by the shock 
reflection. The results also demonstrate that the gain in accuracy obtained by an 
accurate shock reflection always overcome the extra losses due to the temporary 
reduction of the time step needed to perform such accurate reflection (see 
Section 11). The result in Fig. 8f also shows that the overall mass loss after 3691 
iterations is of about 0.7 %. 

12.5. Overall Solution 

Different features are associated with the 20 % and the 60 % initial pressure 
perturbation cases. In the following, shock formation, damping, and long term 
behavior in the two cases will be compared. 

Shock formation. The rate of growth of the 20 % case (Fig. 8a) is obviously 
lower than that of the 60 % case (Fig. 5f). It has already been observed that the 
compression wave in the 20 % case needs three reflections before it reaches a par- 
tially shocked state (point S in Fig. 9b), while in the 60 % case the shock is almost 
fully developed already at the first reflection (point S in Fig. 9e). The method 
encounters different difficulties in the two cases. In the 20 % case, the method 
should be able to follow regions with strong compression gradients for a longer 
period, while in the 60 % case it should be able to handle the fast growth rate of 
the shock. 

The presence of the pre-shock wiggle during the shock formation can be noted 
at point W in Fig. 9b. The disturbance is very small. 
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FIG. 8. Velocity profile time evolution before (a) and after (b) shock reflection. (c). (d) Enlarged 
plots of isomach lines in the vicinity of shock reflection: “far” reflection (c) and “close” reflection (d). 
(e). (f) Mass loss vs time obtained by computing the shock reflection accordingly with criteria shown 
in (c) and (d), respectively. 
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Note that the rarefaction wave in this initial phase is a curved line, for both the 
20 % and the 60 % cases (Figs. 9b, e). 

Damping. In Section 2, it has been mentioned that the shock looses strength by 
converting energy into heat. The damping coefficient 4 computed between the 6th 
and 30th oscillation in Fig. 9a and d, is about -0.0312 for the 20 % case and 
-0.0334 for the 60 % case. The value obtained for the 20 % case can be compared 
with the corresponding value in [ 1 ] (L W + H + ACM). The model of [ 1 ] seems to 
yield a slightly higher damping (5 = -0.0343). For both numerical models (i.e., 
ours and L W+ H + ACM), it is difficult to tell how much of the damping is 
due to physics and how much to numerics. This estimate becomes even more 
difficult for the model of [ 11, since use has been made of an artificial compression 
technique. 

Long term results. The comparison of Fig. 9a with Fig. 10 of [ 1 ] shows that the 
30th oscillation occurs almost at the same time (tp,n, = 53.85 = (59.48),,,). This 
indicates that wave propagation speeds in the two models are roughly the same. 
The numerical results of Fig. 9c, f can be qualitatively compared with the plot of the 
analytic sawtooth-like function exponentially damped, shown in Fig. 9g. The 
damping of this function is set equal to -0.033, the initial amplitude is 0.2, the 
period 1.8. These parameters have been chosen in order to give a good fitting of the 
computed and analytical results between time 50 and 60. The comparison indicates 
that (i) the computed solution after about 5000 steps preserves a perfectly sharp 
and oscillation-free shock and (ii) the expansions between shocks are represented 
by straight lines as in the analytical solution of Fig. 9g. 

Spectral analysis. The time evolution of the pressure oscillation is analyzed by 
an FFT routine. The results are presented, following [lS], as plots of W/a’ vs 
frequency, where 

W(f) = 4nS(w), (18) 

O<f < +m, and -cc<o< +co. 

Here, S(o) is the power spectral density (PSD), o2 the variance of the sampled 
data. 

Accumulated PSD data vs frequency, are also presented. They give the energy 
content up to the frequency f: 

FIG. 9. All figures show time evolution of pressure oscillations at an end of the tube. (ah(c) Results 
for an initial amplitude of 20 % of mean pressure, and (d)-(f) for an amplitude of 60 %. (g) Results for 
a sawtooth-like damped function. 
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FIG. 10. Power spectral density for an initial amplitude of 20 % of mean pressure, obtained during 
time intervals l&20 (a), 30-40 (b), 50-60 (c). (dt(f) Accumulated PSD obtained from PSD data. 
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TABLE I 

Energy Content among Harmonics 

Analytic Computed for t intervals 

Mode l/17’ lc-20 3@40 S&60 

1 .oooo I.000 1 .ooo 1.000 
0.2500 0.223 0.224 0.239 
0.1111 0.139 0.140 0.143 
0.0625 0.059 0.062 0.059 
0.0400 0.040 0.039 0.042 
0.0277 0.035 0.035 0.036 
0.0204 0.018 0.019 0.018 

0.0156 0.017 0.016 0.017 

Both the PSD and the accumulated PSD data, obtained on the 20 % case, 
demonstrate that up to 22 harmonics are already excited at the time interval from 
10 to 20 (Fig. lOa, d). The PSD obtained at three successive time intervals, 
(Figs. lOa<), show that the energy contained in the nth mode closely falls as l/n2 
with respect to the energy contained in the fundamental mode, as predicted analyti- 
cally (Table I). 

13. CONCLUSIONS 

The possibility of adopting a shock-fitting approach to describe propagation of 
finite amplitude waves, wave steepening, and shock propagation in a closed end 
tube has been positively verified. The accurate treatment of the shock, represented 
by a floating double-valued point, and of the points affected by the presence of the 
shock, constitute the key features of this method. The non-dissipative and non- 
dispersive characteristics of the method are obtained without the need for 
“external” restoring of the high frequency content. 

Results obtained for all initial amplitudes indicate that (i) shock transition 
remains oscillation-free even after many wave cycles, (ii) energy distribution among 
modes is in good agreement with the analytical solution, and (iii) it does not 
exhibit significant shifts among modes as time progresses. 

The importance of an early shock detection and of the accurate computation of 
shock reflections have been demonstrated. 

The characteristics summarized here above suggest that the proposed method 
is well tailored for the modelling of both combustion instabilities [l-3], and 
chemically reacting flows. 

The extension to quasi-one-dimensional flows with multiple interactions among 
several kinds of discontinuities is feasible and it is presented elsewhere [ 111. 
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APPENDIX: LIST OF SYMBOLS 

a, speed of sound (m/s) 
CFL, Courant number 
,f, frequency (cycles/s) 
J, Jacobian flux matrix 
L, left-eigenvector matrix of J 
M, Mach number 
IW~, shock Mach number 
M,i,, threshold value of M,, for shock detection 
IZ, mode of oscillation 
p, pressure (N/m*) 
d, pressure perturbation 
R, ideal gas constant (J/( KgK)) 
R,, Riemann variables along characteristics 
S, entropy (J/K) 
S, power spectral density (PSD) (m’) 
T, absolute temperature (K) 
t, time (s) 
U, gas velocity along x-axis (m/s) 
x, spatial distance along x-axis (m) 
W, one-sided power spectral density (m’) 
w, shock speed (m/s) 
wj, gas dynamics variables. 

Greek Symbols 

CI, parameter for shock initialization 
E, distance from the wall for shock reflection 
y, ratio of specific heats 
6 E (y - 1)/2 
At, finite difference increments of t 
Ax, finite difference increments of x 
t, damping coefficient 
,4, eigenvalue matrix of J 
Aj, characteristic speeds 
7L = 3.14159... 
p, density (Kg/m3) 
z E (RI, - RjA )IQ, 
z* = (UB f 6(u, - UA))/UA 
g2 variance of sampled time series (m*) 
o, circular frequency (rad/s). 

Superscripts 

k. time level 
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Subscripts 

A, shock low pressure side 
B, shock high pressure side 
O, initial conditions 
j, grid point 
.I 

J, =j+l 
M,, derivative with respect to shock Mach number 
n, grid point 
p.w., present work 
Y, reference 
s, shock 
t, time derivative 
x, space derivative. 

Operator’s Symbols 

d( .)/dx, first-order space derivative 
d2( .)/dx2, second-order space derivative 
d( .)/dt, first-order time derivative 
D( .)/Dt, substantial derivative. 
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